EconWorks Products: What They Are and How They Can Be Used
Stephen Fitzroy, Executive Vice President, Economic Development Research Group, Inc. | April 20, 2017
• What is EconWorks? (Case Studies, W.E.B. Tools)
• History: Why were the EconWorks tools developed?
• Key Concepts
  – Economic Analysis (BCA, EIA)
  – Ex-Post Analysis
• Case Studies: Ex-Post Analysis of Economic Impacts
  – Different from typical EIA “models”
  – New information and insights
• W.E.B. Tools
  – Enhancement to traditional ex-ante analysis
  – Suite of tools
• Upcoming Webinar Series
• What is EconWorks? (Case Studies, WEB Tools)
• History: Why were the EconWorks tools developed?
• Key Concepts
  – Economic Analysis (BCA, EIA)
  – Ex-Post Analysis
• Case Studies: Ex-Post Analysis of Economic Impacts
  – Different from typical EIA “models”
  – New information and insights
• W.E.B. Tools
  – Enhancement to traditional ex-ante analysis
  – Suite of tools
• Upcoming Webinar Series
What is EconWorks?

SHRP2 Planning Tools
The second Strategic Highway Research Program (SHRP2) included more than 100 research products designed to improve the way transportation professionals plan, operate, maintain and ensure safety on America's roadways. PlanWorks, TravelWorks and EconWorks will help transportation planners conduct better collaborative processes, produce better modeling and transportation analysis, and introduce economic benefit analysis into early project decision making.

What's New
The Rapid Policy Assessment Tool (RPAT) open source code is now available. Check TravelWorks' Resource Page to download the code.
Incorporate Wider Economic Benefits into BCA
(and other analyses)

Wider Economic Benefit Analysis Tools
## What is EconWorks?

Find and Learn from Past Projects: Economic Impact on Communities

### Case Study Search

To search the case study library, select filters from the column headings. You can compare case studies and print results using the buttons at the bottom. Available information includes descriptions of project features and pre/post data about impacts on the local or regional economy. It includes detailed results from local interviews on project objectives, implementation issues and other factors as well as aerial photos and other reports.

### Filters:

- Project Details
- Project Type
- Motivation
- Geographic
- Region
- Length
- Average Annual Daily Traffic
- Topography
- Urban/Class Level
- Economic Distress
- Other Criteria
- Airport Travel
- Distance
- Project Cost

### Case Studies

<table>
<thead>
<tr>
<th>Project</th>
<th>Type</th>
<th>BEA Region</th>
<th>Cost (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hammondsport</td>
<td>Access Road</td>
<td>New England/Mid-Atlantic</td>
<td>$1,708.26</td>
</tr>
<tr>
<td>Interstate 58</td>
<td>Limited Access Road</td>
<td>New England/Mid-Atlantic</td>
<td>$1,708.26</td>
</tr>
<tr>
<td>Yass Bypass</td>
<td>Bypass</td>
<td>International</td>
<td>$127.65</td>
</tr>
</tbody>
</table>

**Hammondsport**
The Hammondsport Industrial Access Road involved resurfacing of three adjoining streets in the village's industrial western flank, running a total length of about a mile.

**Interstate 58**
Interstate 58 is part of the Appalachian Development Highway System, a network of roads intended to foster economic development throughout the Appalachian region. The route followed by I-68 was first designated as Corridor E by the Appalachian Regional Development Act of 1965.

**Yass Bypass**
A bypass in town of Yass, New South Wales (NSW) State by the Hume Highway - linking Sydney and Melbourne. The bypass includes 15 bridges and 18km of dual carriageway.
Explore the range of economic impacts that may result from a specific type of project in a defined setting, based on the case database.
What is EconWorks?

EconWorks Wider Economic Benefits Analysis Tools

Tools for analyzing the economic impacts of accessibility, reliability and connectivity projects

SHRP2 included five tools to help practitioners use economic analysis in project decision making. These tools are designed to fill the gap between the screening stage where the Case Studies may be useful and later stages where agencies may employ detailed economic models.

Analysis Tools includes:

- **Accessibility**: tools designed to explain the benefits and impacts of a project to the labor and buyer-supplier markets.
- **Reliability**: tool designed to explain the benefits and impacts of projects designed to improve system reliability (e.g. ITS projects).
- **Connectivity**: tool designed to explain the benefits and impacts of improved intermodal connectivity.

A final Analysis Tool, the **Accounting Framework**, provides a place to assemble the results of the accessibility, reliability and connectivity tools alongside more traditional benefits categories like safety, travel time savings and vehicle operating cost savings.

To use any of these tools, download the tool and the user’s guide as well as the final research report: *Development of Tools for Assessing Wider Economic Benefits of Transportation*.

Ask questions of other users on the Analysis Tools Forum.

**Accessibility**
- Specialized Labor Market Access Tool
- Buyer-Supplier Market Access Tool
- User Guide

**Reliability**
- Tool
- User Guide

**Connectivity**
- Tool
- User Guide

**Accounting Framework**
- Tool

Tools to incorporate Accessibility, Reliability, & Connectivity Benefits into early-stage BCA
• What is EconWorks? (Case Studies, W.E.B. Tools)

• **History:** Why were the EconWorks tools developed?

• **Key Concepts**
  – Economic Analysis (BCA, EIA)
  – Ex-Post Analysis

• **Case Studies:** Ex-Post Analysis of Economic Impacts
  – Different from typical EIA “models”
  – New information and insights

• **W.E.B. Tools**
  – Enhancement to traditional ex-ante analysis
  – Suite of tools

• **Upcoming Webinar Series**
EconWorks (formerly “TPICS”) Case Studies

Part of a broader “ex-post” analysis movement (BCA/EIA)

**Goals: Accountability; Improve Analysis, Design, & Expectations**

**International**

- **France**: mandatory ex-post analysis of large projects (1982 - )

- **UK**: new ex-post emphasis at DfT following analysis by National Audit Office

- **Mexico**: National Observatory

**United States**

- **Rural Interstates** (Miller, 1979)

- **GAO Guidance** (1991)

- **Bypasses** (Multiple)

- **Appalachian Regional Commission** (2000)

- **FHWA Guide** (2001)

- **SHRP/EconWorks** (2005 - )
History & Need: EconWorks

Second Strategic Highway Research Program (SHRP2)

- Authorized by Congress in 2005
- To translate objective credible research into products that are ready for implementation
- Capacity program goals:
  - Increase the likelihood of choosing and delivering “good projects”
  - Systematically integrate environmental, economic, and community requirements into planning and design.
“TPICS” Case Studies - SHRP2 (C03)

- Better incorporate economic vitality and land use factors into the planning and investment process.
- Support “early stage” planning and collaborative decision-making.
- Ex-post case-based analysis
  - Identify **LONG-TERM Economic Impacts** from New/Capacity-Enhancing Highway Investments
  - Illustrate the **Interaction** between Highway Infrastructure and Non-Highway Investments and Initiatives

60 Initial Transportation Project Impact Case Studies (T-PICS)

EconWorks Cases (112 cases currently)
Wider Economic Benefit Tools SHRP2 (C11)

- Designed to **fill the gap** between the screening stage where the Case Studies may be useful and later stages where agencies may employ detailed economic models.
- **Open-source tools** that use parameters from readily available research/data
- Addresses **benefit-cost analysis**
- Move **beyond traditional benefit categories** (i.e. safety, travel time, vehicle operating costs) to capture additional **productivity** related effects
History & Need: EconWorks

1. Policy / Funding Stage
2. Planning/Strategy Stage
3. Programming Stage
4. Prioritization Stage
5. Project Devel./ EIS Stage
6. Operations Stage

EconWorks Case Studies

EconWorks W.E.B Tools

Economic Model (REMI, TREDIS)

Ref: SHRP2 Collaborative Decision-Making Framework
• What is EconWorks? (Case Studies, WEB Tools)
• History: Why were the EconWorks tools developed?
• **Key Concepts**
  – Economic Analysis (BCA, EIA)
  – Ex-Post Analysis
• **Case Studies: Ex-Post Analysis of Economic Impacts**
  – Different from typical EIA “models”
  – New information and insights
• **W.E.B. Tools**
  – Enhancement to traditional ex-ante analysis
  – Suite of tools
• **Upcoming Webinar Series**
### BCA v. EIA: Alternative Perspectives

<table>
<thead>
<tr>
<th>Measure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Benefits</strong></td>
<td>• Used in <em>benefit-cost</em> assessments to assess the <em>efficiency</em> of an investment</td>
</tr>
<tr>
<td></td>
<td>• Dollar value of net <em>welfare gain</em> to transportation system users (user benefits) and non-users (external benefits)</td>
</tr>
<tr>
<td><strong>Economic Impacts</strong></td>
<td>• Impacts on the <em>flow of money</em> in the economy; includes <em>multiplier effects</em></td>
</tr>
<tr>
<td></td>
<td>• Measured in terms of jobs, income, value added, and business output</td>
</tr>
<tr>
<td></td>
<td>• Tangible <em>measures of changes in a specific local economy</em> for constituents, policy makers, &amp; industry representatives</td>
</tr>
</tbody>
</table>
### Key Concepts: Economic Analysis

#### BCA v. EIA: Alternative Perspectives

<table>
<thead>
<tr>
<th>Measure</th>
<th>Description</th>
</tr>
</thead>
</table>
| Benefits            | • Used in **benefit-cost** assessments to assess the **efficiency** of an investment  
                        • Dollar value of net **welfare gain** to transportation system users (user benefits) and non-users (external benefits) |
| Economic Impacts    | • Impacts on the **flow of money** in the economy; includes **multiplier effects**  
                        • Measured in terms of jobs, income, value added, and business output  
                        • Tangible **measures of changes in a specific local economy** for constituents, policy makers, & industry representatives |
Key Concepts: Economic Analysis

Distinctions between BCA and EIA

Benefit/Cost Analysis (BCA)
- Personal Time
- Safety
- Environmental
- Social/Livability

Productivity Factors
- Business–Related Time Cost
- Operating Cost
- Access/Agglomeration
- Reliability/Technology Adoption & Labor/Resource Utilization

Economic Impact Analysis (EIA)
- Economic Geography (Competitiveness)
  - Labor & Capital Flows
  - Export Growth
  - Import Substitution
  - Workforce & Pop. Migration

Productivity Factors Drive Both BCA & EIA
**Productivity** = \( \frac{\text{output produced}}{\text{inputs required}} \)

Productivity impact of transportation reflects:

- **Efficiency gains for business-related travel**, that are enabled by travel time / cost savings
- **Wider economic benefits** associated with agglomeration and logistics technology efficiencies, that are enabled by access, connectivity and reliability effects
What is EconWorks? (Case Studies, WEB Tools)
History: Why were the EconWorks tools developed?
Key Concepts
  - Economic Analysis (BCA, EIA)
  - Ex-Post Analysis
Case Studies: Ex-Post Analysis of Economic Impacts
  - Different from typical EIA “models”
  - New information and insights
W.E.B. Tools
  - Enhancement to traditional ex-ante analysis
  - Suite of tools
Upcoming Webinar Series
Key Concepts: Ex-Post Analysis

Why Ex-Post Analysis?

Project Design → Ex-Ante Assessment

Ex-Post Analyses ← Project Selection & Implementation
Why Ex-Post Analysis?

Learn from past outcomes

• “Ground” expectations in real-world examples
• Investigate nuanced causal relationships
  – Policy objectives
  – Economic context
  – Complementary non-transportation policy
• Provide “case studies” that can facilitate discussion between planners & stakeholders
• Validate/temper model findings
Why Ex-Post Analysis?

The Challenge:
The relationship between transportation and economic vitality is very real yet it is also multi-faceted and sometimes complex.

The Approach:
Investigate actual observed economic development impacts (new or expanded development) within a specific geographic area.

Use interviews, document research, and before-and-after data collection to understand the influence of transportation and non-transportation factors.
Agenda

• What is EconWorks? (Case Studies, W.E.B. Tools)
• History: Why were the EconWorks tools developed?
• Key Concepts
  – Economic Analysis (BCA, EIA)
  – Ex-Post Analysis
• Case Studies: Ex-Post Analysis of Economic Impacts
  – Different from typical EIA “models”
  – New information and insights
• W.E.B. Tools
  – Enhancement to traditional ex-ante analysis
  – Suite of tools
• Upcoming Webinar Series
Learn From Ex-Post Analysis of Completed Projects

**Search criteria**
- Project Type
- Mode
- Motivation
- Region
- Length
- Daily Use
- Topography
- Urban Class level
- Distress level
- Airport access
- Project Cost
- Market size
- Economic Growth Rates
- Pop. Density

**Project Results**
- **Economic Impacts**
  - Jobs
  - Personal income
  - Business sales
- Pre/Post Conditions of Study
  - Region
- Narrative**
Example of an EconWorks Case

### Key Words:

- **Des Moines US 65/IA 5 Bypass**
  - Iowa 5 and U.S. 65 highways, built in phases between 1994 and 2003, run along the southern and eastern sides of the Des Moines metropolitan region. Together with Interstates 35 and 80, which bound Des Moines to the west and north, Iowa 5 and U.S. 65 form a beltway around the city.
  - **Type**: Beltway
  - **Mode**: Highway
  - **Region**: Great Lakes / Plains
  - **Cost (Millions)**: $315.68
  - **End Date**: 2003

- **Fort Wayne, Indiana, I-469 Bypass**
  - The intent of the I-469 Bypass was to divert pass-through traffic from I-69 and downtown Fort Wayne to relieve traffic congestion.
  - **Type**: Beltway
  - **Mode**: Highway
  - **Region**: Great Lakes / Plains
  - **Cost (Millions)**: $317.66
  - **End Date**: 1995

- **Appleton, Wisconsin, Route 441 Bypass**
  - Route 441 circumvents the city of Appleton, Wisconsin on the eastern side. This route, along with US 41, forms a square-shaped beltway around the city.
  - **Type**: Beltway
  - **Mode**: Highway
  - **Region**: Great Lakes / Plains
  - **Cost (Millions)**: $205.16
  - **End Date**: 1993

3 Results Found
Project Description

Project: Des Moines US 65/IA 5 Bypass

Description:

Iowa 5 and U.S. 65 highways, built in phases between 1994 and 2003, run along the southern and eastern sides of the Des Moines metropolitan region. Together with Interstates 35 and 80, which bound Des Moines to the west and north, Iowa 5 and U.S. 65 form a beltway around the city.

Characteristics and Setting:

<table>
<thead>
<tr>
<th>Project Type:</th>
<th>Beltway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Mode:</td>
<td>Highway</td>
</tr>
<tr>
<td>Average Annual Daily Traffic (ppl):</td>
<td>21,113</td>
</tr>
<tr>
<td>Length (mi):</td>
<td>24.00</td>
</tr>
<tr>
<td>Economic Distress:</td>
<td>0.61</td>
</tr>
<tr>
<td>Population Density (ppl/sq mi):</td>
<td>572</td>
</tr>
<tr>
<td>Population Growth Rate (%):</td>
<td>128.00</td>
</tr>
<tr>
<td>Employment Growth Rate (%):</td>
<td>332.00</td>
</tr>
<tr>
<td>Market Size:</td>
<td>439,105</td>
</tr>
<tr>
<td>Airport Travel Distance:</td>
<td>8</td>
</tr>
<tr>
<td>Topography:</td>
<td></td>
</tr>
</tbody>
</table>

Geography

<table>
<thead>
<tr>
<th>Region:</th>
<th>Great Lakes / Plains</th>
</tr>
</thead>
<tbody>
<tr>
<td>State:</td>
<td>IA</td>
</tr>
<tr>
<td>County:</td>
<td>County</td>
</tr>
<tr>
<td>City:</td>
<td>Des Moines</td>
</tr>
<tr>
<td>Urban/Class Level:</td>
<td>Metro</td>
</tr>
<tr>
<td>Local Area:</td>
<td>N/A</td>
</tr>
<tr>
<td>Impact Area:</td>
<td>County</td>
</tr>
<tr>
<td>Transportation System:</td>
<td>N/A</td>
</tr>
<tr>
<td>GIS Lat/Long:</td>
<td>41.547083 / -93.513566</td>
</tr>
</tbody>
</table>

Timing

| Initial Study Date: | 1990 |
| Post Constr. Study Date: | 2013 |
| Constr. Start Date: | 1991 |
| Constr. End Date: | 2003 |
| Months Duration: | 108 |

Costs

| Project Year of Expenditure (YOE): | N/A |
| Planned Cost (YOE $): | 126,000,000 |
| Actual Cost (YOE $): | 0 |
| Actual Cost (curr $): | 315,675,709 |
### County Impacts for: County

NOTE: All impact dollar values are in 2013$

<table>
<thead>
<tr>
<th>Measure</th>
<th>Direct</th>
<th>Indirect</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jobs</td>
<td>645.00</td>
<td>400.00</td>
<td>1045.00</td>
</tr>
<tr>
<td>Income (in $M's)</td>
<td>37.70</td>
<td>23.30</td>
<td>61.00</td>
</tr>
<tr>
<td>Output (in $M's)</td>
<td>107.48</td>
<td>64.63</td>
<td>172.11</td>
</tr>
</tbody>
</table>
Case Location:

41°32'49.5"N 93°30'48.8"W

Directions  Save

View larger map
Project Narrative

3.0 Project Description & Motives
Planning for the corridor dates back at least to the 1970s when the first environmental and location studies were prepared for the Iowa 5 improvements. Funding limitations prevented construction of the project, which was delayed until the early 1990s. Similar alignments were considered as far back as the Iowa 1968 Highway Plan, a planning document authored following the completion of the majority of the Interstate System in Iowa. Prior to the construction of the freeway segment east of Des Moines, U.S. 65 ran conterminous with U.S. 69 north as far as Euclid Avenue, at which point it joined U.S. 6 and ran northeast to I-80, Army Post Road, which stretched east-west from I-35 to Southeast 45th Street (just west of the future U.S. 65 alignment), was originally two miles south of the original Army north-south U.S. 65 portion, and finished Iowa Department of Transportation, the Norwalk Beltway.

The freeway bypass was built to decrease congestion, and increase accessibility to a considered a tool for economic development realized. In 2012, the Iowa Department of Transportation realized the corridor to an Interstate. Both the Des Moines Internal Highway, and the Des Moines Internal Highway, and the access it provides, and the Des Moines Regional Transportation organization (MPO) and the Purple City Heart the designation used as a means to further developments of these freeway segments complete a beltway.

Des Moines is served by multiple rail lines and a network of freeways. Des Moines is served by multiple rail lines: the Des Moines International Airport, the Des Moines River Valley, and the Des Moines River Valley. Des Moines is served by multiple rail lines: the Des Moines International Airport, the Des Moines River Valley, and the Des Moines River Valley. Des Moines is served by multiple rail lines: the Des Moines International Airport, the Des Moines River Valley, and the Des Moines River Valley.

4.0 Project Impacts
4.1 Transportation Impacts
In 1992, when the Iowa DOT evaluated the U.S. 65 traffic at 8,600 to 11,400 vehicles per day, the Iowa DOT created a report detailing the congestion levels overall to be Des Moines Area Metropolitan Planning Organization (MPO) for the year 2010, with only 5% experiencing unstable congestion. While some of the most congested spots in Des Moines, planners nevertheless report route provided by the bypass. Interviewees are still relatively unaware of the access.

Despite the limited congestion in the Des Moines Metropolitan Planning Organization, Transportation Improvement Program Fiscal Years 2001-2003.

5.0 Non-Transportation Factors
A number of additional non-transportation factors affected development in the highway corridor. For example, the fact that the industrial area located just west of U.S. 65 is in a floodplain acts to some degree to constrain development. The most significant non-transportation factor affecting the corridor’s development is the historic westward momentum of growth in Des Moines. The bypass has only gradually shifted development to the east and south, and only after developable land became scarcer to the west and north.

Tax increment financing played a significant role in the development strategy of multiple communities along the corridor. TIF is used to secure a major new business with anticipated tax revenue large enough to fund infrastructure investment. Utilities or road infrastructure built with tax increment financing can then attract additional firms to the same area. TIF was used extensively in Altoona and is also part of the development package for the recently announced Microsoft Data Center in West Des Moines. Another funding source that has supported development along the beltway is Iowa DOT’s Revitalize Iowa’s Sound Economy (RISE) grant program, which was used to finance the new Capital City Fruit facility in Norwalk.

Finally, it is worth noting some of the subtleties associated with determining “net new” jobs from project development along the Des Moines area. The metropolitan area of Des Moines has experienced overall robust growth in the last decade or so. Moreover, companies with long histories in the area want to remain in their established communities. While Iowa 5/U.S. 65 has opened up new areas for growth and made it easier to find large parcels of land for companies looking to expand, these companies would have attempted to stay in the region even without the highway’s construction. The highway contributes towards the fulfillment of growth in the region, by making it easier to find locations for companies already in the area to stay and grow.

6.0 Resources
6.1 Citations


• Screening Tool
• Define project characteristics > see potential range of impacts
• Differs from typical EIA “models”
  – Based on observations in database, ONLY
  – **Does not** provide information on the effects of changing VMT/VHT or effects of changing reliability, connectivity or accessibility
  – Enables exploration of the influence of community factors on observed project outcomes

Learn From Ex-Post Analysis of Completed Projects

Case Study Search    Assess My Project
Estimated Impacts

Assess My Project

Characteristics

**Project Type**
- Access Road
- Limited Access Road
- Bypass
- Connector
- Beltway
- Bridge
- Interchange
- Widening
- Freight Terminal
- Station
- Service Improvement
- Line Extension
- New Line

**Region**
- New England/Mid-Atlantic
- International
- Great Lakes / Plains
- Southwest
- Southeast

Estimated Project Cost: $328 million
Estimated Average Annual Daily Traffic: 22,176

<table>
<thead>
<tr>
<th></th>
<th>Jobs</th>
<th>Wages (mil.)</th>
<th>Output (mil.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Impacts</td>
<td>519 - 864</td>
<td>$24 - $40</td>
<td>$77 - $129</td>
</tr>
<tr>
<td>Supplier and Wage Impacts</td>
<td>298 - 496</td>
<td>$14 - $23</td>
<td>$44 - $73</td>
</tr>
<tr>
<td>Total Impacts</td>
<td>816 - 1,361</td>
<td>$38 - $64</td>
<td>$121 - $202</td>
</tr>
</tbody>
</table>

Actions

Move the sliders to adjust for higher or lower levels of project cost, traffic and community factors applicable in your case. You will then see shifts in the likely range of economic impacts.

- **Project Cost:**
  - Below Average
  - Above Average

- **Average Annual Daily Traffic:**
  - Below Average
  - Above Average

- **Land Use Policies:**
  - Restrictive
  - Supportive

- **Infrastructure:**
  - Not Available
  - State-of-Art

- **Business Climate:**
  - Negative
  - Aggressive
Yields a new understanding of economic development effects and pathways...

- No individual economic measure can capture the full range of the economic effects
- Economic impacts take time and depend on project settings and type
- Economic conditions and project location (urban/rural) are important determinants of outcomes
- Motivations for projects influence outcomes
- Projects that are coordinated with broader planning and investments tend to produce measurably greater economic impacts
• What is EconWorks? (Case Studies, W.E.B. Tools)
• History: Why were the EconWorks tools developed?
• Key Concepts
  – Economic Analysis (BCA, EIA)
  – Ex-Post Analysis
• Case Studies: Ex-Post Analysis of Economic Impacts
  – Different from typical EIA “models”
  – New information and insights
• W.E.B. Tools
  – Enhancement to traditional ex-ante analysis
  – Suite of tools
• Upcoming Webinar Series
W.E.B. Tools

**Little or No Productivity Impact**
Projects addressing **social, environment, safety factors, and personal travel**

**Productivity Gain from Traditional User Benefit**
Projects that reduce **time/cost** for business-related travel: **speed, vehicle capacity, frequency, dwell time**

**Productivity Gain from Wider Economic Benefits**
- Enhance **reliability** for business-related travel: *congested bottlenecks, product inventory and delivery processes*
- Enhance **accessibility** for business-related travel: *labor market, material supplier market, customer market routes between clusters or communities in a region*
- Enhance **intermodal connectivity** for business-related travel: *ground access to, or service at, intermodal terminals*
Enhancement to Traditional BCA

Transportation Network Characteristics
Traditional Tools
W.E.B. Tools
User Benefits
Travel Time, Travel Cost, Safety
Wider Economic Benefits
Efficiency & Productivity

Suite of Tools
Accessibility
Reliability
Intermodal Connectivity
Accounting Framework

Calculate
Assemble
EconWorks Wider Economic Benefits Analysis Tools

Tools for analyzing the economic impacts of accessibility, reliability and connectivity projects

SHRP2 included five tools to help practitioners use economic analysis in project decision making. These tools are designed to fill the gap between the screening stage where the Case Studies may be useful and later stages where agencies may employ detailed economic models.

Analysis Tools include:

**Accessibility**: tools designed to explain the benefits and impacts of a project to the labor and buyer-supplier markets.

**Reliability**: tool designed to explain the benefits and impacts of projects designed to improve system reliability (e.g. ITS projects).

**Connectivity**: tool designed to explain the benefits and impacts of improved intermodal connectivity.

A final Analysis Tool, the **Accounting Framework**, provides a place to assemble the results of the accessibility, reliability and connectivity tools alongside more traditional benefits categories like safety, travel time savings and vehicle operating cost savings.
• What is EconWorks? (Case Studies, W.E.B. Tools)
• History: Why were the EconWorks tools developed?
• Key Concepts
  – Economic Analysis (BCA, EIA)
  – Ex-Post Analysis
• Case Studies: Ex-Post Analysis of Economic Impacts
  – Different from typical EIA “models”
  – New information and insights
• W.E.B. Tools
  – Enhancement to traditional ex-ante analysis
  – Suite of tools
• Upcoming Webinar Series
## Upcoming Webinars

<table>
<thead>
<tr>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Economic Impact Analysis Tools:</strong> Using case studies for project and program assessment</td>
<td>Th June 15 2:00-3:30 PM EST</td>
</tr>
<tr>
<td><strong>Wider Economic Benefit Tools – Part 1:</strong> Using WEB tools to assess changes in market access in a Benefit Cost Analysis (BCA)</td>
<td>Th August 17 2:00-3:30 PM EST</td>
</tr>
<tr>
<td><strong>Wider Economic Benefit Tools – Part 2:</strong> Using WEB tools to assess changes in reliability and connectivity in a Benefit Cost Analysis (BCA)</td>
<td>Th October 19 2:00-3:30 PM EST</td>
</tr>
<tr>
<td><strong>EconWorks as a Decision Support System:</strong> educating and informing the public, decision makers and stakeholders about the economic effects of transportation investments</td>
<td>Th December 14 2:00-3:30 PM EST</td>
</tr>
</tbody>
</table>

In the meantime, please explore!  
https://planningtools.transportation.org/13/econworks.html
Questions?